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Testing the limitations of harmonic approximation in the determination of
Raman intensities
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Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

ABSTRACT
Raman intensities in molecular spectra are usually computed within double harmonic approxima-
tion. This procedure relies on treating a vibrating molecule as a collection of harmonic oscillators
and on the assumption that polarisability tensor invariants display linear variations around the
molecular equilibrium geometry. This methodology, originally formulated by Placzek, constitutes
the theoretical foundation for computing Raman intensities in standard quantum chemistry pack-
ages. However, the two assumptions underlying double harmonic approximation have not been
sufficiently tested. In this work, we employed exact anharmonic ro-vibrational wave functions and
distance-dependent polarisability invariants together with their harmonic approximants to investi-
gate the discrepancies in Raman intensities of the fundamental transitions in 12 diatomicmolecules,
caused by double harmonic approximation. We found that: (i) the errors in total Raman inten-
sities were between −8.2% and +9.5%, (ii) the largest discrepancy was observed for F2, where
the polarisability invariants could not be adequately modelled by their linear approximants, and
(iii) quantum chemical methods fail to predict reliable polarisability invariants at non-equilibrium
molecular geometries; the associated errors in Raman intensities are huge and completely over-
shadow the shortcomings of double harmonic approximation. We communicate here an urgent
need for developing accurate methods capable of computing reliable polarisabilities also at
distorted geometries.
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1. Introduction

Raman spectroscopy is a well established branch of vibra-
tional spectroscopy. Theoretical determination of Raman
transition frequencies and the corresponding intensities
comprises an important part of spectroscopic analysis.
Theoretical foundations for this procedure were laid by
Placzek [1] who used the polarisability tensor and vibra-
tional wave functions as building blocks of his theory. In
his work, the first-order induced dipole Pρ along a Carte-
sian axes ρ, is expressed as a function of the polarisability
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α and the incident electric field Eσ as

(Pρ)vf ,vi = 〈αρσ 〉vf ,viEσ (1)

where 〈αρσ 〉vf ,vi represents the matrix element of polar-
isability connecting the initial state i to the final state f,
which is determined as

〈αρσ 〉vf ,vi = 〈ψvf |αρσ (Q)|ψvi〉 (2)

with αρσ being the geometry-dependent molecular
polarisability expressed as function of normal coordinates
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Q, αρσ ≡ αρσ (Q). Polarizability is then expanded at the
equilibrium molecular geometry as a Taylor series in Q
to obtain

αρσ = (αρσ )0 +
∑
k

(
δαρσ

δQk

)
0
Qk

+ 1
2

∑
l

∑
k

(
δ2αρσ

δQkδQl

)
0
QkQl + · · · (3)

Substituting the above expansion for polarisability
truncated at the first-order, and using harmonic oscilla-
tor wave functions for ψ in Equation (2) while working
under the assumption of electrical harmonicity gives

〈αρσ 〉vf ,vi = (αρσ )0
〈∏

k

φvf ,k(Qk)
∏
k

φvi,k(Qk)

〉

+
∑
k′

(
δαρσ

δQk′

)
0

×
〈∏

k

φvf ,k(Qk)|Qk|
∏
k

φvi,k(Qk)

〉
, (4)

which consists of two terms.1 Using selection rules
derived from harmonic-oscillator functions (see Sec-
tion S1 in the supplementary material for more details),
the zeroth-order term corresponds to Rayleigh scatter-
ing, while the latter term, containing the first-derivatives
of polarisability corresponds to Raman scattering.

The above discussion based on the harmonic approx-
imation constitutes the primary approach to the com-
putation of Raman intensities [2].2 Both formalisms for
normal coordinate analysis and the resulting intensity
analysis rest on the harmonic approximation. Conse-
quently, almost all quantum chemistry programs avail-
able at present employ this double harmonic approxima-
tion for the computation of vibrational intensities, with
truncation of polarisability invariants at the first order.
While a great deal of work has been done regarding
the discrepancy of harmonic transition frequencies with
experimental results [3–11], a similar discussion perti-
nent to Raman intensities is limited [12,13]. The question
to be answered is: What is the error associated with the
assumption of the electrical harmonicity? In other words,
how accurate are the Raman intensities computed under
the harmonic approximation?

There are a few challenges to overcome in order to reli-
ably answer these questions. The first one is to obtain
accurate state specific wave functions for the studied
molecules, and the second is to obtain reliable polaris-
abilities expressed as a function of the vibrational coor-
dinates. These issues limit the choice of the possible
molecules which can be studied in this context.

For diatomic molecules, the exact state-specific vibra-
tional wave functions can be readily obtained beyond
the harmonic approximation. In contrast, for larger
molecules this is significantly harder. In computation
of ab-initio polarisabilities, the accuracy of the results
depends to a large extent on the choice of the quantum-
chemical technique used for the calculations and on the
choice of the basis sets used to construct the electronic
wave function. Thus, it becomes computationally chal-
lenging to reliably perform tests on the harmonic approx-
imation on larger molecular systems, where the quantum
chemical calculations become expensive or even infea-
sible. Thus, smaller molecules are preferred for such a
study. In the case of diatomicmolecules, the polarisability
can be naturally expressed as a function of the internu-
clear distance. In view of these considerations, we limit
ourselves in the current study to a series of diatomic
molecules containing from two to 18 electrons.

For diatomic molecules, several experimental and
theoretical studies have been reported in the litera-
ture which indirectly expose the errors originating from
the double harmonic approximation. Herman and Wal-
lis discussed the centrifugal distortion arising from the
vibration-rotation coupling during accurate determina-
tion of infrared intensities [14]. Similar study for the
Raman intensities was performed by James and Klem-
perer [15]. In these works, the diatomic molecule under
study was assumed to behave as a harmonic oscillator,
and the centrifugal term J(J + 1)/2μr2 was approxi-
mated as a 2–3 term expansion over the reduced inter-
nuclear distance, ξ , defined as ξ = (r − re)/re. Polar-
izability anisotropy γ = α|| − α⊥, an invariant of the
polarisability tensor α, governing the intensities of the
O- and S-branches was approximated as a Taylor series
expansion over ξ

γ (ξ) = γ0 + γ1 ξ + 1
2
γ2 ξ

2 + · · · (5)

where γ1 = ∂γ
∂r and γ2 = ∂2γ

∂r2 , while retaining up to
three terms in the expansion. Using perturbation the-
ory or numerical solutions, the correction factors (usu-
ally referred to as the Herman-Wallis factors) were
approximated as functions of derivatives of polarisabil-
ity anisotropy (γn), rotational constant (Be), vibrational
constant (ωe) and the rotational quantum number (J).
Alternatively, using known values of molecular constants
and the determined Herman-Wallis factors, the values
of derivatives of polarisability anisotropy for equilibrium
internuclear distance were obtained by analysing intensi-
ties from acquired Raman spectra. The first derivative of
polarisability anisotropy (γ1) for H2 and D2 were deter-
mined by Asawaroengchai and Rosenblatt [16]. Ham-
aguchi and coworkers employed a simplified expansion
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[17,18] given by

γ (ξ)

γ0
= 1+ γ1

γ0
ξ + 1

2
γ2

γ0
ξ 2 + . . . (6)

and reported the numerical value of (γ1/γ0)re and
(γ2/γ0)re for the same molecules. In this approach, the
calculated Raman intensities were fitted using non-linear
least squares regression to experimental intensities for
O0- and S0-branch lines of H2 and D2, obtaining the
values of (γ1/γ0)re and (γ2/γ0)re as fit parameters along
with the intensity response curve of the spectrometer.
Further, a similar analysis performed for N2 revealed
that the inclusion of the second derivatives in Equa-
tions (5) and (6) is less important than for H2 [17–19].
In our earlier work, we have investigated the effects of
centrifugal distortion to the Raman intensities of purely
rotational transitions in H2, HD and D2, and examined
the importance of including higher order derivatives of
polarisability invariants in the process of determination
of the Raman intensities [20]. This work revealed that
Taylor series expansion up to the second order yields an
excellent representation of both the invariants around re.

We start our analysis by performing accurate compu-
tations of Raman intensities determined from accurate,
anharmonic ro-vibrational wave functions of diatomic
molecules and the corresponding geometry-dependent
molecular polarisability invariants computed over the
varying internuclear distance using standard ab initio
methods coupled with response theory [21–27]. Accu-
rate ro-vibrational wave functions of diatomic molecules
are obtained by numerical solution to the radial nuclear
problem given by Equation (7). These quantities allow
us to evaluate numerically the integral in Equation (2)
in order to compute the transition matrix element for
a specific transition. In the next step, we construct
approximations to the distance-dependent polarisability
invariants by constructing their Taylor expansions at the
internuclear distance corresponding to the ground ro-
vibrational state in Equation (3) and truncating them
at some low order. Such simplified polarisability invari-
ants representations are subsequently used in the spirit
of original Placzek approach to determine the Raman
intensities using the integral in Equation (2). Further, we
analyse the role of an accurate representation of the ro-
vibrational wave functions for the computation of the
integral in Equation (2), comparing the Raman intensi-
ties computed with accurate anharmonic ro-vibrational
wave functions with those computed using the corre-
sponding harmonic ro-vibrational wave functions.

The current study relies to a large degree on the
knowledge of accurate potential energy curves used to
determine numerically the vibrational wave functions of

diatomic molecules. In particular, the underlying poten-
tial energy curve for the molecular hydrogen, being one
of the pillars of the current analysis, is known to high
accuracy owing to the extensive work of the late Pro-
fessor Lutosław Wolniewicz. He devoted many decades
of his life for producing more and more accurate and
physically exact potential energy curves for H2 and its
isotopologues.With this publication we would like to pay
a tribute to thememory of ProfessorWolniewicz, without
whosemagnificent work the present analysis could not be
adequately performed.

2. Analysis scheme

2.1. Overview

Two components are required for accurate evaluation of
the integral in Equation (2) for diatomic molecules: (a)
polarisability and (b) ro-vibrational wave functions, both
expressed as a function of the internuclear distance. In
this section, we define the necessary terms relevant to the
present analysis.

Polarizability tensor defined in the Cartesian coor-
dinates consists of two non-vanishing principal com-
ponents, α⊥, defined as the component perpendicular
to the molecular axis, and α‖, defined as the compo-
nent parallel to the molecular axis. For freely rotat-
ing molecules, two rotational invariants of polarisability
are employed instead: mean polarisability ᾱ = (2α⊥ +
α‖)/3 and polarisability anisotropy γ = α‖ − α⊥.

Due to the simple structure of diatomic molecules,
their accurate ro-vibrational wave functions can be
expressed as functions of a single variable, the internu-
clear distance (r). The ro-vibrational wave functions are
determined by numerical solution to the radial nuclear
problem given by Equation (7). Each ro-vibrational func-
tion obtained in this way is indexed with the vibrational
quantum number v and a rotational quantum number
J, and—for our convenience pertaining to the numeri-
cal integration procedure used here—also by the span
of the internuclear distances over which the function is
non-negligible.

In order to generate reliable reference data for test-
ing the double harmonic approximation usually used
for computing Raman intensities,3 we start by evaluat-
ing the integral in Equation (2) in the most accurate
form, i.e. with anharmonic ro-vibrational wave func-
tionsψanhrm and exact polarisability invariants (ᾱexact or
γ exact). Both quantities are computed over a fine grid of
internuclear distances and represented as cubic splines.
Raman intensity for the fundamental transition is then
computed using the relevant transition matrix elements.
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This quantity constitutes our reference against which the
approximate forms of the same quantity are compared.

In the next step,we construct approximate forms of the
quantities needed to evaluate the integral in Equation (2),
namely, sets of harmonic wave functions ψharmn deter-
mined fromharmonic potentials andTaylor series expan-
sions of polarisability invariants at the equilibrium inter-
nuclear distance, denoted as ᾱ(n) or γ (n), where where
n refers to the Taylor series expansions truncated at the
nth order. The approximate quantities are then used to
compute the relevant matrix elements, and finally the
corresponding Raman intensities.

We conclude our analysis by performing a detailed
comparison between the exact and approximate sets of
Raman intensities of the studied diatomic molecules
and present a discussion of accuracy of the studied
approximations.

2.2. Computational details

2.2.1. Polarizability calculations
Static (frequency-independent) components of the polar-
isability tensor were computed over a fine grid of internu-
clear distances for all the studiedmolecules using various
ab initio techniques. Specific details for eachmolecule are
given below.

Distance-dependent static polarisabilities of H2, HD
and D2 were adapted from our earlier work [28]. In
brief, the polarisability was computed using CCSD tech-
nique [29,30] (equivalent in this case to FCI calculations)
using a composite basis set comprising of hydrogen’s
atomic aug-mcc-pV6Z basis set ofMielke et al. [31] down-
loaded from the EMSL basis set database [32,33] and cus-
tom designed bond-functions. These calculations were
performed using DALTON quantum chemistry package
[30]. In the case of H2, HD andD2, a large discrepancy in
the values of mean polarisability and its anisotropy were
observed when using standard atomic-basis in compari-
son with the results computed using explicitly correlated
wave functions byRychlewski [21–23]. The application of
standard AO basis in conjunction with additional bond-
functions placed at five equidistant positions along the
internuclear axis resulted in significantly improved polar-
isabilities, comparable in quality to the explicitly corre-
lated results of Rychlewski. The additional bond func-
tions comprised of even-tempered Gaussian primitives
(8s6p), constructed using the expression αβ1−k with α =
1.8518519 and β = 3 for the s-functions and with α =
2.520 and β = 3 for the p-functions. The detailed devel-
opment of this composite basis set was described in our
earlier work [28]. The previously presented results filled
up gaps in the available data relevant to the spectroscopy

of molecular hydrogen, and resolved several irregulari-
ties in the polarisability datasets reported by Rychlewski
[22].

The polarisabilities for the remaining molecules stud-
ied here (HF, HCl, CO, N2 and F2) were initially com-
puted using response theory with the coupled cluster
with single, double and perturbative triple excitations
(CCSD(T)) wave functions [34,35] and the aug-cc-pVQZ
basis sets [36,37]. The cfour quantum chemistry pack-
age was used for these computations [38,39]. Keeping
in mind the development for the molecular hydrogen
described above, it was natural to expect that additional
bond functions placed along the internuclear axis would
systematically improve the computed polarisabilities also
for HF, HCl, CO, N2 and F2. Unfortunately, this was
not the case. The gradually developed bond-functions
(for more details, see Section S2 of the supplemen-
tary material) allowed us to systematically improve the
total energy values for these molecules, but at the same
time the observed changes in the polarisability invari-
ants displayed rather unsystematic and at times unex-
pected convergence patterns with no apparent trends.
Consequently, we gave up the idea of using composite
basis sets and decided to use the CCSD(T)/aug-cc-pVQZ
polarisabilities in our analysis.

Some of the distance-dependent CCSD(T)/aug-cc-
pVQZ polarisability components α⊥ and α‖ for the non-
hydrogen systems showed rather peculiar behaviour at
larger internuclear distances. To avoid the possibility of
using systematically erroneous polarisability data in our
analysis, stemming from the inadequate description of
electronic structure of these molecules with CCSD(T),
we computed the values of α⊥ and α‖ using also other
methods, includingHartree-Fock (HF) [27,40], complete
active space self-consistent field (CASSCF) [41–45], den-
sity functional theory (DFT) [46–49] and occasionally
coupled cluster with single, double, and triple excita-
tions (CCSDT) [38,50–52] methodologies. These results
showed rather surprising lack of internal consistency;
we discuss them in detail separately in Section 3.1.1.
Here we only briefly mention that the HF, CASSCF,
and DFT calculations were performed using the aug-
cc-pVQZ [36,37] basis sets on the DALTON quantum
chemistry package [30]. The CASSCF calculations used
the following sequence of valence active spaces: (8e, 5o)
for HF, (8e, 5o) for HCl, (10e, 8o) for CO, (10e, 8o) for
N2, and (14e, 8o) for F2. The DFT calculations were
performed using the B3LYP functional [53–56]. The
CCSDT computations were performed in the same man-
ner as those with CCSD(T), but using a smaller basis
set (aug-cc-pVTZ) [36,37]. All basis sets used in this
work were obtained from the EMSL basis set database
[32,33].
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2.2.2. Wavefunctions
The ro-vibrational wave functions ψv,J ≡ ψv,J(r) for the
studied diatomic molecules were obtained by numeri-
cally solving the radial nuclear equation[ −1

2μr2
∂

∂r
r2
∂

∂r
+ J(J + 1)

2μr2
+ V(r)

]
ψv,J(r)

= Ev,J ψv,J(r) (7)

where the potential energy curve V(r) was adapted
from earlier works or determined in a way described
below using reported sets of experimental transition
frequencies.

The potential energy curves for molecular hydrogen
and its isotopologues were adapted from the work of
Wolniewicz [57] who reported the Born-Oppenheimer
potential together with the scaled adiabatic, relativistic,
and radiative corrections to it. Each of these components
was interpolated to a finer grid spanning the interval
from 0.2 to 12.0 a.u. and combined together in order
to obtain the final potential energy curve. These curves
were given an analytic, third-order spline representa-
tions, whichwas subsequently used in numerical solution
to the radial nuclear Schrödinger problem. For details,
see our previous work [28].

The usual way of determining accurate potentialsV(r)
for solving radial nuclear Schrödinger problem is based
on quantum chemical calculations. Here, however, we
resorted to a different solution, which can be referred
to as an inverse Schrödinger problem. To this end, we
employed a set of accurate experimental ro-vibrational
levels and transition frequencies to determine the best
potential energy curve that reproduces these levels and
frequencies via the solution to Equation (7). There are
many possible choices of the analytical form for the
potential energy function that can be used in this con-
text. Here, for the HF, DF, HCl, DCl, N2, 14N15N, and
F2 molecules, we chose the modified Morse function
[58,59]

V(r) = α
[
1− e−c0(r−re)+c1(r−re)

2+c2(r−re)3
]2

(8)

with five fitting parameters α, c0, c1, c2, and re and for CO
and 13C16O, we used the Rydberg function [60–62]

V(r) = De

[
1− [1+ b (r − re)] e−b (r−re)

]
(9)

with b =
√

ke
De

and with three fitting parameters ke, De,
and re. The optimal values of the parameters for each
potential energy function were obtained by performing
a non-linear least squares optimisation with experimen-
tal ro-vibrational transition frequencies and energy levels
covering v = 0–3 and J = 0–4 used as reference. The

optimised parameters are tabulated in Table 1. A detailed
description of the optimisation procedure, along with
the list of experimental ro-vibrational levels used in the
optimisation and the corresponding values obtained by
solving the ro-vibrational Schrödinger equation with the
fitted potentials, are given in Section S3 of supplementary
material.

A similar approach was used to determine the cor-
responding harmonic wave functions ψharmn. The only
difference to the just discussed scheme used for find-
ing accurate ro-vibrational wave functions ψanharm con-
cerned using a set of harmonic energy levels for each
molecule as a reference and an analytical potential
expression V(r) = k(r − re)2 with re corresponding to
the equilibrium internuclear distance with the force con-
stant k optimised to reproduce the harmonic vibrational
frequency ωe of each system. The values of re and ωe
were taken from the compilation of Herzberg and Huber
[63]. The values of these constants together with the
reproduced harmonic levels are given in Section S4 of
supplementary material.

The solution to the radial nuclear Schrödinger
equation in Equation (7) was constructed numerically
using the collocation method [64,65] with the five-point
stencil representations of the derivative operators. The
Hamiltonian matrix was diagonalised for each rotational
state J separately. A detailed process of constructing the
Hamiltonian matrix and its diagonalisation is described
in detail in Section S4 of the supplementary material.
The resulting ro-vibrational wave functions ψv,J were
determined only on the collocation grid and their ana-
lytical representation was subsequently obtained as a
third-order spline. The relevant scheme for solution of
Equation (7) was implemented in Python using NumPy
[66,67].

The spline representations [68] of the computed
polarisability invariants  = ᾱ, γ and the resulting
ro-vibrational wave functions ψv,J were subsequently
used in an adaptive Gauss-Kronrod-Patterson quadra-
ture [69–71] to compute numerically the integral in
Equation (10) yielding the required transition matrix
elements

〈ψv′,J′ ||ψv,J〉 =
∫ rmax

rmin

ψv′,J′  ψv,J r2 dr (10)

The lower and upper integration limits, rmin and rmax,
respectively, were selected in such a way that both the
involved ro-vibrational wave functions ψv,J and ψv′,J′
were negligible (|ψv,J |, |ψv′,J′ | < 10−6) beyond the inter-
val [rmin, rmax].

The integral in Equation (10) can be used for comput-
ing the normalisation of each ro-vibrational wave func-
tion if we set  = 1. We use this condition to determine
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Table 1. Details regarding the potential energy curve for the studied molecules
in this work. For hydrogen and its isotopologues, we adapt the potential energy
curve from the work of Wolniewicz (Ref. [57]) after cubic-spline interpolation
(Ref. [28]). For the other molecules, the optimised parameters of the analytical
potential functions used are listed (see text for more details).

Molecule Type Parameters Molecule Type Parameters

H 2 Ref. [28,57] CO Rydberg De = 0.37563416
HD Ref. [28,57] ke = 1.22186557
D2 Ref. [28,57] re = 2.13081292
HF Morse α = 0.35329865 13C16O Rydberg De = 0.37416296

c0 = 0.93760569 ke = 1.2221096
c1 = 0.16211304 re = 2.13237061
c2 = −0.02953036
re = 1.73219245 N2 Morse α = 0.44320257

c0 = 1.28992997
DF Morse α = 0.32449615 c1 = c2 = 0a

c0 = 0.93760569 re = 2.07375152
c1 = 0.15017749
c2 = −0.0334324 14N15N Morse α = 0.71696534
re = 1.73163182 c0 = 1.00934466

c1 = c2 = 0a

HCl Morse α = 0.19657065 re = 2.07636687
c0 = 0.91807751
c1 = c2 = 0a F2 Morse α = 0.07997099
re = 2.4121016 c0 = 1.37680336

c1 = c2 = 0a

DCl Morse α = 0.19581078 re = 2.66708039
c0 = 0.92009524
c1 = c2 = 0a

re = 2.41109861
a The parameter c0 was sufficient to reproduce the observed energy levels in this case, and
hence, c1 and c2 were set to zero.

the normalisation constants for each of the used here
ro-vibrational wave functions, so in the following equa-
tions and discussions all the normalisation constants will
be automatically equal to one and omitted. For inter-
ested reader, we mention that all those wave functions
are available fromGitHub [72] repository; for details, see
Section 6.

2.2.3. Truncated expansions of polarisability
invariants
Truncated Taylor series approximations of polaris-
ability invariants at the internuclear distance r0 =
〈ψv=0,J=0| r |ψv=0,J=0〉 were constructed as follows:

• The values of  = ᾱ, γ computed on the original
grid were fitted over the interval [rmin, rmax] using
a nine-degree polynomial. We used typically 50–60
grid points for this step. The resulting polynomial was
represented in a Taylor-series-like form

 =
9∑

n=0


(n)
r0
n!

(r − r0)n (11)

where(n)r0 can be interpreted as the nth order deriva-
tive of at r0. The fit reproducedexact faithfully with
typical deviations of around 1×10−4 (≤0.1%).

• Only exact and (1) were used to compute the
matrix elements of the polarisability invariants in con-
junction with the exact anharmonic wave functions
ψanharm or their harmonic approximations ψharmn.
Squares of these matrix elements are tabulated in
Tables 2, 3, and 4.

3. Results

The present analysis relies to a large degree on accurate,
distance-dependent polarisabilities and ro-vibrational
wave functions as the necessary ingredients. Therefore,
we start our discussion by presenting the computed per-
pendicular and parallel components of the polarisability
tensor for each molecule together with the correspond-
ing rotational invariants. These results are followed by a
short discussion of the ro-vibrational wave functions and
a compilation of the computed matrix elements and the
resulting Raman intensities.

3.1. Polarizabilities

The distance-dependent polarisability components (α⊥
and α‖) and the associated invariants (ᾱ and γ ) for
molecular hydrogen are shown in Figure 1. These results,
adapted from our previous work [28], were found to be
in good agreement with the analogous results computed
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Table 2. Comparison of the matrix elements of polarisability invariants and the total
Raman intensitya for the fundamental vibrational transition |v = 1, J = 0〉 ← |v =
0, J = 0〉 formolecular hydrogen and its isotopologues computedusingCCSDmethodol-
ogy, andwith exact anharmonic wave functions (ψanhrm) or their harmonic counterparts
(ψharmn), along with exact polarisability invariants (ᾱexact and γ exact) or their linear
approximations (ᾱ(1) and γ (1)).

Mean polarisability 〈ψv=0,J=0|ᾱ|ψv=1,J=0〉2
H2 HD D2

ψ = ψanhrm, ᾱ = ᾱexact 0.5468 0.4699 0.3801
ψ = ψharmn, ᾱ = ᾱexact 0.5075 (−7.2 %) 0.4402 (−6.3 %) 0.3601 (−5.3 %)
ψ = ψanhrm, ᾱ = ᾱ(1) 0.5430 (−0.7 %) 0.4668 (−0.7 %) 0.3778 (−0.6 %)
ψ = ψharmn, ᾱ = ᾱ(1) 0.5322 (−2.7 %) 0.4587 (−2.4 %) 0.3724 (−2.0 %)

Polarizability anisotropy 〈ψv=0,J=0|γ |ψv=1,J=0〉2
H2 HD D2

ψ = ψanhrm, γ = γ exact 0.3740 0.3165 0.2514
ψ = ψharmn, γ = γ exact 0.3114 (−16.7 %) 0.2697 (−14.8 %) 0.2203 (−12.3 %)
ψ = ψanhrm, γ = γ (1) 0.3528 (−5.6 %) 0.3006 (−5.0 %) 0.2407 (−4.2 %)
ψ = ψharmn, γ = γ (1) 0.3458 (−7.5 %) 0.2954 (−6.7 %) 0.2372 (−5.6 %)

Total Raman intensity 〈ψv=0,J=0|ᾱ|ψv=1,J=0〉2 + 7
45 〈ψv=0,J=0|γ |ψv=1,J=0〉2

H2 HD D2
ψ = ψanhrm, ᾱ = ᾱexact, γ = γ exact 0.6049 0.5191 0.4192
ψ = ψharmn, ᾱ = ᾱexact, γ = γ exact 0.5559 (−8.1%) 0.4822 (−7.1%) 0.3944 (−5.9%)
ψ = ψanhrm, ᾱ = ᾱ(1) , γ = γ (1) 0.5979 (−1.2%) 0.5135 (−1.1%) 0.4153 (−0.9%)
ψ = ψharmn, ᾱ = ᾱ(1) , γ = γ (1) 0.5860 (−3.1%) 0.5046 (−2.8%) 0.4093 (−2.4%)
aCorresponding to linearly polarised excitation and parallelly and perpendicularly polarised detection
scheme, usually denoted in literature as (incident‖ , detection‖+⊥).

Table 3. Comparison ofmatrix elements of mean polarisability for the fundamental vibrational transition |v = 1, J = 0〉 ← |v = 0, J =
0〉 for nine diatomic molecules, computed at various levels of theory (HF, CASSCF, DFT and CCSD(T)) and approximations: with exact
anharmonic ro-vibrational wave functions (ψanhrm) or their harmonic counterparts (ψharmn), and with exact mean polarisability (ᾱexact)
or its linear approximation (ᾱ(1)).

Mean polarisability 〈ψv=0,J=0|ᾱ|ψv=1,J=0〉2
Method Components HF DF HCl DCl CO 13C16O N2 14N15N F2

HF ψ = ψanhrm, ᾱ = ᾱexact 0.1118 0.0782 0.3824 0.2653 0.1100 0.1074 0.1914 0.1885 0.2617
ψ = ψanhrm, ᾱ = ᾱ(1) 0.1062 0.0754 0.3656 0.2568 0.1094 0.1069 0.1908 0.1882 0.2585

(−5.0%) (−3.6%) (−4.4%) (−3.2%) (−0.5%) (−0.5%) (−0.3%) (−0.2%) (−1.2%)
ψ = ψharmn, ᾱ = ᾱ(1) 0.1043 0.0744 0.3592 0.2536 0.1087 0.1062 0.1897 0.1866 0.2555

(−6.7%) (−4.8%) (−6.1%) (−4.4%) (−1.2%) (−1.1%) (−0.9%) (−1.0%) (−2.3%)
CASSCF ψ = ψanhrm, ᾱ = ᾱexact 0.1349 0.0939 0.3084 0.2162 0.1149 0.1123 0.1222 0.1204 0.0169

ψ = ψanhrm, ᾱ = ᾱ(1) 0.1271 0.0899 0.3014 0.2120 0.1143 0.1116 0.1223 0.1206 0.0184
(−5.8%) (−4.3%) (−2.3%) (−1.9%) (−0.5%) (−0.6%) (+0.1%) (+0.2%) (+8.6%)

ψ = ψharmn, ᾱ = ᾱ(1) 0.1248 0.0888 0.2962 0.2093 0.1135 0.1109 0.1216 0.1196 0.0182
(−7.5%) (−5.5%) (−4%) (−3.2%) (−1.2%) (−1.2%) (−0.5%) (−0.7%) (+7.4%)

DFT ψ = ψanhrm, ᾱ = ᾱexact 0.1266 0.0895 0.3665 0.2567 0.1051 0.1027 0.1485 0.1463 0.1085
ψ = ψanhrm, ᾱ = ᾱ(1) 0.1229 0.0876 0.3568 0.2517 0.1045 0.1021 0.1483 0.1462 0.1086

(−2.9%) (−2.1%) (−2.7%) (−1.9%) (−0.6%) (−0.6%) (−0.1%) (−0.1%) (+0.1%)
ψ = ψharmn, ᾱ = ᾱ(1) 0.1207 0.0865 0.3505 0.2485 0.1038 0.1015 0.1474 0.1450 0.1074

(−4.6%) (−3.3%) (−4.4%) (−3.2%) (−1.2%) (−1.2%) (−0.7%) (−0.9%) (−1.0%)
CCSD(T) ψ = ψanhrm, ᾱ = ᾱexact 0.1392 0.0979 0.3842 0.2694 0.1254 0.1226 0.1161 0.1144 0.0523

ψ = ψanhrm, ᾱ = ᾱ(1) 0.1353 0.0923 0.3753 0.2648 0.1248 0.1220 0.1165 0.1149 0.0554
(−2.8%) (−5.7%) (−2.3%) (−1.7%) (−0.5%) (−0.5%) (+0.4%) (+0.4%) (+5.9%)

ψ = ψharmn, ᾱ = ᾱ(1) 0.1328 0.0911 0.3687 0.2614 0.1240 0.1212 0.1158 0.1139 0.0548
(−4.6%) (−6.9%) (−4.0%) (−3.0%) (−1.1%) (−1.1%) (−0.2%) (−0.4%) (+4.7%)

using explicitly correlated wave functions by Rychlewski
[22]; for more details, see [28]. The computed polaris-
ability tensor components of molecular hydrogen at large
internuclear distances converge properly to the correct
atomic limit equal to twice of the atomic polarisability of
hydrogen [73].

For the other studied here molecules (HF, HCl, CO,
N2, and F2) the analogous results are shown in Figures 2

and 3. Since the electronic wave functions were com-
puted under the Born-Oppenheimer approximation, the
resulting polarisabilities are the same for pairs of iso-
topologues: HF and DF, HCl and DCl, CO and 13C16O,
and N2 and 14N15N. No accurate reference data is avail-
able for these molecules in literature, so to be on the safe
side we used various quantum chemical methods to ver-
ify the correctness of the presented here results. In the
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Table 4. Comparison of matrix elements of polarisability anisotropy for the fundamental vibrational transition |v = 1, J = 0〉 ← |v =
0, J = 0〉 for ninediatomicmolecules, computed at various levels of theory (HF, CASSCF,DFT andCCSD(T)) and approximations:with exact
anharmonic ro-vibrational wave functions (ψanhrm) or their harmonic counterparts (ψharmn), and with exact polarisability anisotropy
(γ exact) or its linear approximation (γ (1)).

Polarizability anisotropy 〈ψv=0,J=0|γ |ψv=1,J=0〉2
Method Components HF DF HCl DCl CO 13C16O N2 14N15N F2

HF ψ = ψanhrm, γ = γ exact 0.3470 0.2391 1.5021 1.0335 0.1962 0.1917 0.2419 0.2382 1.7744
ψ = ψanhrm, γ = γ (1) 0.3215 0.2262 1.4166 0.9910 0.1945 0.1901 0.2404 0.2371 1.7481

(−7.4%) (−5.4%) (−5.7%) (−4.1%) (−0.9%) (−0.9%) (−0.6%) (−0.5%) (−1.5%)
ψ = ψharmn, γ = γ (1) 0.3157 0.2234 1.3917 0.9785 0.1932 0.1889 0.2389 0.2351 1.7281

(−9.0%) (−6.6%) (−7.3%) (−5.3%) (−1.5%) (−1.5%) (−1.2%) (−1.3%) (−2.6%)
CASSCF ψ = ψanhrm, γ = γ exact 0.4802 0.3299 1.2631 0.8797 0.2358 0.2303 0.1512 0.1489 0.0290

ψ = ψanhrm, γ = γ (1) 0.4426 0.3108 1.2235 0.8569 0.2332 0.2258 0.1507 0.1486 0.0345
(−7.8%) (−5.8%) (−3.1%) (−2.6%) (−1.1%) (−2.0%) (−0.4%) (−0.2%) (+18.9%)

ψ = ψharmn, γ = γ (1) 0.4346 0.3069 1.2021 0.8460 0.2317 0.2244 0.1497 0.1474 0.0341
(−9.5%) (−7.0%) (−4.8%) (−3.8%) (−1.7%) (−2.6%) (−1.0%) (−1.1%) (+17.5%)

DFT ψ = ψanhrm, γ = γ exact 0.3295 0.2296 1.2790 0.8873 0.2525 0.2467 0.2158 0.2126 0.5318
ψ = ψanhrm, γ = γ (1) 0.3124 0.2209 1.2269 0.8611 0.2505 0.2448 0.2148 0.2119 0.5301

(−5.2%) (−3.8%) (−4.1%) (−3.0%) (−0.8%) (−0.8%) (−0.5%) (−0.3%) (−0.3%)
ψ = ψharmn, γ = γ (1) 0.3068 0.2181 1.2053 0.8501 0.2488 0.2432 0.2135 0.2102 0.5240

(−6.9%) (−5.0%) (−5.8%) (−4.2%) (−1.5%) (−1.4%) (−1.1%) (−1.2%) (−1.5%)
CCSD(T) ψ = ψanhrm, γ = γ exact 0.3448 0.2379 1.2490 0.8672 0.3008 0.2939 0.1286 0.1267 0.1657

ψ = ψanhrm, γ = γ (1) 0.3244 0.2200 1.2009 0.8429 0.2983 0.2912 0.1291 0.1273 0.1802
(−5.9%) (−7.5%) (−3.9%) (−2.8%) (−0.9%) (−0.9%) (+0.4%) (+0.4%) (+8.7%)

ψ = ψharmn, γ = γ (1) 0.3185 0.2173 1.1798 0.8321 0.2963 0.2894 0.1283 0.1262 0.1781
(−7.6%) (−8.7%) (−5.5%) (−4.0%) (−1.5%) (−1.5%) (−0.2%) (−0.4%) (+7.5%)

Figure 1. Static (wavelength independent) values of: (a) the
polarisability components α⊥ and α‖, and (b) the associated
invariants ᾱ and γ , plotted as a function of the internuclear dis-
tance. These values were calculated using CCSD methodology
and the custom designed composite basis (aug-cc-mccPV6Z with
5×(8s6p) bond functions). The region corresponding to the non-
negligible values of the vibrational wave functions with v = 0, 1
is represented by a blue shade, with the depth of the colour repre-
senting themagnitudes of thewave functions. Thepurple triangle
represents separated atom limit equal to 2× α(H).

case of α⊥, the results obtained using HF, CASSCF, DFT,
CCSD(T) and (at times) CCSDT show similar trends in
the interval [rmin, rmax], with the values increasing grad-
ually with increasing internuclear distances.We conclude
that the computed values of α⊥ can be considered as reli-
able, but their accuracy cannot be expected to be larger
than a few percent as substantial numerical discrepancies
between curves obtained with various methods suggest.

In the case of α‖, the situation is much more seri-
ous. In principle, the curves computed with various ab
initio methods for CO, HF, N2, and HCl show similar
trends and resemble each other, except maybe for the
internuclear distances close to rmax, where the discrep-
ancies between the curves are larger. However, for F2F
2, considerable deviations between the computed curves
are observed inside almost thewhole interval [rmin, rmax],
with particularly large discrepancies at larger internu-
clear distances. This should not be surprising as a similar
observation was reported previously by Maroulis [74],
who studied the distance-dependent polarisability and
hyper-polarisabilities of F2F 2 using different ab ini-
tio techniques. From our perspective, however, of the
planned analysis of Raman intensities, this is a rather
unexpected and unforeseen obstacle, as it is difficult to
say without further analysis which of these curves are
correct. To resolve this issue we decided to look deeper
into this problem by studying the distance dependence
of α‖ and α⊥ at the full range of internuclear separations.
The results of this investigation are presented in the next
section.
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Figure 2. Static (wavelength independent) valuesof theα⊥ com-
ponent of the polarisability tensor plotted as a function of the
internuclear distance calculated using different ab initio tech-
niques. The interval spannedby the first vibrationalwave function
is represented by the blue shaded region in each panel.

Figure 3. Static (wavelength independent) values of theα‖ com-
ponent of the polarisability tensor plotted as a function of the
internuclear distance calculated using different ab initio tech-
niques. The interval spannedby the first vibrationalwave function
is represented by the blue shaded region in each panel.

3.1.1. Sanity check for the computed
distance-dependent polarisabilities
The values of α‖ and α⊥ computed over larger range of
internuclear distances (from 1.2 to 7 bohr) are shown
in Figure 4 for all the studied here molecules except
molecular hydrogen. At large distances, the values of
both components of molecular polarisability should con-
verge to the corresponding atomic limit equal to the sum
of atomic polarisabilities. These limits, computed from
accurate atomic data [73], are depicted in Figure 4 using
purple triangles located at the right edge of each panel.
Obviously, most of the used here methods are single-
reference in nature and cannot describe adequately the
process of molecular dissociation. Therefore, we do not
expect that the curves computedwith thesemethods (HF,
DFT, andCCSD(T)) would converge to the correct limits.
The question we try to address here is rather when these
methods loose their applicability and start diverging.

Rather surprisingly, we discovered that α⊥ computed
with all the tested here ab initiomethods converge—more
or less accurately—to the expected atomic limit. In case
of CCSD(T), the calculations for CO and N2 cannot con-
verge for internuclear separations larger than 4.6 bohr,
but even so, the values of α⊥ at 4.6 bohr are close to the
corresponding atomic limits. The situation is completely
different for α‖. Practically all the tested here single-
reference ab initiomethods diverge away from the atomic
limits, but the trend of divergence is quite different for
each method.

The only method which passes our sanity check is
CASSCF. Again, this is not surprising, as CASSCF with
valence active space is capable of producing correct wave
functions over the whole range of internuclear separa-
tions, and consequently reproducing physically mean-
ingful values of both components of the polarisability
tensor, which converge to the correct atomic limit. Unfor-
tunately, despite of quite reasonable distance dependence
of α‖ and α⊥ computed with CASSCF, we proceed rather
cautiously with accepting the CASSCF values in our anal-
ysis of Raman intensities, because the CASSCF polaris-
abilities seem to differ frommore accurate CCSD(T) and
DFT values at distances where all the methods are appli-
cable. The best example can be inferred from Figure 2,
where α⊥ of F2 computed with CASSCF and HF differ
from the values obtained with other methods by 5–15%.
We believe that reliable distance-dependent polarisabil-
ities of many-electron systems—and consequently also
reliable Raman intensities of such systems—can can com-
puted only using multireference correlated methods, but
the appropriate response theory tools are not yet avail-
able.
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Figure 4. Static (wavelength independent) values of the two components of polarisability (α‖ andα⊥) for HF, HCl, CO, N2, and F2 plotted
as a function of the internuclear distance calculated using different ab initio techniques. The interval spanned by the first vibrational wave
function is represented by the blue shaded region in each panel. The purple triangle on the right y axes represents the sum of atomic
polarisabilities of the constituent atoms.

We are forced to use in our further analysis the
CASSCF values of the polarisability tensor invariants as
the reference data even if we know that these values are
not too accurate. A comparison of results obtained with

other methods is presented later, in Section 3.4, where we
use the CASSCF results as a reference and try to estimate
the deviations in the total Raman intensities obtained
with other ab initio techniques.
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For some molecules, we observe spiky local features
(α‖ of N2 at 3.5 bohr with the HF method and α⊥ of F2
at 6.0 bohr with the CASSCF method) or discontinuities
(α‖ and α⊥ of CO at 4.1 bohr with the CCSD(T)method)
in the computed polarisabilities in Figures 2–4. These
originate from the shortcomings of response theory at
stretched geometries. Fortunately, all of these spurious
features are quite local and do not affect the polarisabili-
ties in the region important for our analysis.

3.2. Ro-vibrational wave functions

Ro-vibrational wave functions ψanharm for H2, HD
and D2 were obtained by a numerical solution of the
radial nuclear equation with accurate potential energy
functions determined by Wolniewicz [57]. The com-
puted energy levels of ro-vibrational states are compared
with accurate experimental and theoretical results in
Section S4 of supplementary material. This comparison
shows deviations within one wavenumber.

For the other molecules studied in this work, no
potential energy curves have been reported in litera-
ture that would allow to achieve similar accuracy in the
determination of ro-vibrational wave functions ψanharm.
Therefore, to circumvent this difficulty we decided to
use an alternative solution that can be referred to as the
inverse Schrödinger problem, in which accurate experi-
mental ro-vibrational transition frequencies reported in
literaturewere used to find an optimal shape of the poten-
tial energy surface allowing to reproduce these values
with best fidelity; more details are given in Section 2.2.2.
All the ro-vibrational energy levels computed with this
procedure together with all the relevant transition fre-
quencies were found to be within one wavenumber from
the reference values. Detailed list of these energy levels
and the corresponding transition frequencies is given in
Section S4 of supplementary material together with their
comparisons to experimental reference data.

3.3. Matrix elements of polarisability invariants
and total Raman intensities

The results for H2, HD and D2 are shown in Table 2.
We tabulate three different properties: mean polarisabil-
ity 〈ψv=0,J=0|ᾱ|ψv=1,J=0〉2 matrix elements, polarisabil-
ity anisotropy 〈ψv=0,J=0|γ |ψv=1,J=0〉2 matrix elements,
and total Raman intensities 〈ψv=0,J=0|ᾱ|ψv=1,J=0〉2 +
7
45 〈ψv=0,J=0|γ |ψv=1,J=0〉2, all computed with four differ-
ent approaches, in which the ro-vibrational wave func-
tion is selected either asψanharm orψharmn and the polar-
isability invariants are taken in the exact form (ᾱexact and
γ exact) or as its linear approximations (ᾱ(1) and γ (1)).
Note that the total Raman intensity formula given above

corresponds to linearly polarised excitation and parallelly
and perpendicularly polarised detection scheme, usually
denoted in literature as (incident‖, detection‖+⊥).

The following conclusions can be drawn:

(1) All the approximations, either pertaining to the sim-
plifications in the ro-vibrational wave functions or to
the simplifications in the polarisability tensor invari-
ants, invariably lead to reducing of the values of the
computedmatrix elements. This eventually results in
reduced total Raman intensities with respect to the
exact values. This effect is more pronounced when
the exact ro-vibrational wave function is replaced
by its harmonic approximation (error of 6–8%).
Approximating the exact polarisability by its linear
form gives smaller error of about 1%.

(2) The deviations from the exact results in the matrix
elements of polarisability anisotropy are always a
few times larger than analogous deviations in the
matrix elements of mean polarisability, for all types
of approximations.

(3) The largest deviation (16%) in the computed matrix
elements is observed for the polarisability anisotropy
of H2 computed by combining harmonic wave func-
tion ψharmn with exact form of the invariant. Sur-
prisingly, using linear approximation to polarisabil-
ity anisotropy reduces this deviation by about half,
owing to error cancellations.

(4) The deviations in Raman intensities are compara-
ble to those observed for the matrix elements of
mean polarisability, due to the fact that the con-
tribution from the polarisability anisotropy matrix
elements—laden with substantially larger devia-
tions—is diluted by a small prefactor of 7/45.

(5) The double harmonic approximation, correspond-
ing to the choice of ψharmn and ᾱ(1) and γ (1) in
the integral in Equation (10), gives an overall error
of around 2–3% in the computed Raman intensi-
ties. The deviation is slightly smaller for heavier
isotopologues of molecular hydrogen.

We have analysed the data for molecular hydrogen
separately above, because these results are not affected by
possible large systematic errors in the determination of
the polarisability invariants used to compute the Raman
intensities. We believe that the results for molecular
hydrogen are very close to the exact quantummechanical
limit. The results for othermolecules discussed below use
quite approximate values of the polarisability tensor com-
ponents as discussed earlier in Section 2.2.1. The effect of
the double harmonic approximation can be still approx-
imately assessed using these CASSCF invariants, but the
absolute values of the resulting Raman intensities should
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Table 5. Comparison of the total Raman intensity for the fundamental vibrational transition |v = 1, J = 0〉 ← |v = 0, J = 0〉 for nine
diatomic molecules computed at various levels of theory (HF, CASSCF, DFT and CCSD(T)) and approximations: with exact anharmonic
wave functions (ψanhrm) or their harmonic counterparts (ψharmn), along with exact polarisability invariants (ᾱexact and γ exact) or their
linear approximations (ᾱ(1) and γ (1)).

Total Raman intensity= 〈ψv=0,J=0|ᾱ|ψv=1,J=0〉2 + 7
45 〈ψv=0,J=0|γ |ψv=1,J=0〉2

Method Components HF DF HCl DCl CO 13C16O N2 14N15N F2

SCF ψ = ψanhrm, ᾱ = ᾱexact, γ = γ exact 0.1658 0.1154 0.6161 0.4261 0.1405 0.1373 0.2290 0.2256 0.5377
ψ = ψanhrm, ᾱ = ᾱ(1) , γ = γ (1) 0.1562 0.1105 0.5859 0.4110 0.1396 0.1365 0.2282 0.2251 0.5304

(−5.8%) (−4.2%) (−4.9%) (−3.5%) (−0.6%) (−0.6%) (−0.3%) (−0.2%) (−1.4%)
ψ = ψharmn, ᾱ = ᾱ(1) , γ = γ (1) 0.1534 0.1092 0.5757 0.4058 0.1387 0.1356 0.2268 0.2232 0.5244

(−7.5%) (−5.4%) (−6.6%) (−4.8%) (−1.2%) (−1.2%) (−1.0%) (−1.1%) (−2.5%)
CASSCF ψ = ψanhrm, ᾱ = ᾱexact, γ = γ exact 0.2096 0.1452 0.5049 0.3531 0.1516 0.1481 0.1457 0.1436 0.0214

ψ = ψanhrm, ᾱ = ᾱ(1) , γ = γ (1) 0.1959 0.1383 0.4918 0.3453 0.1505 0.1467 0.1458 0.1437 0.0238
(−7.0%) (−5.1%) (−2.7%) (−2.2%) (−0.7%) (−1.0%) (+0.0%) (+0.1%) (+9.7%)

ψ = ψharmn, ᾱ = ᾱ(1) , γ = γ (1) 0.1924 0.1365 0.4831 0.3409 0.1496 0.1458 0.1449 0.1425 0.0235
(−8.2%) (−6.0%) (−4.3%) (−3.4%) (−1.3%) (−1.6%) (−0.6%) (−0.7%) (+9.5%)

DFT ψ = ψanhrm., ᾱ = ᾱexact, γ = γ exact 0.1778 0.1252 0.5655 0.3947 0.1443 0.1410 0.1821 0.1794 0.1912
ψ = ψanhrm, ᾱ = ᾱ(1) , γ = γ (1) 0.1715 0.1220 0.5476 0.3856 0.1434 0.1402 0.1817 0.1792 0.1911

(−3.6%) (−2.6%) (−3.2%) (−2.3%) (−0.6%) (−0.6%) (−0.2%) (−0.1%) (−0.1%)
ψ = ψharmn, ᾱ = ᾱ(1) , γ = γ (1) 0.1684 0.1205 0.5380 0.3807 0.1425 0.1393 0.1806 0.1777 0.1889

(−5.3%) (−3.8%) (−4.9%) (−3.5%) (−1.3%) (−1.2%) (−0.8%) (−0.9%) (−1.2%)
CCSD(T) ψ = ψanhrm, ᾱ = ᾱexact, γ = γ exact 0.1928 0.1349 0.5785 0.4043 0.1722 0.1683 0.1361 0.1341 0.0781

ψ = ψanhrm, ᾱ = ᾱ(1) , γ = γ (1) 0.1857 0.1265 0.5621 0.3959 0.1712 0.1673 0.1366 0.1347 0.0834
(−3.7%) (−6.2%) (−2.8%) (−2.1%) (−0.6%) (−0.6%) (+0.4%) (+0.4%) (+6.9%)

ψ = ψharmn, ᾱ = ᾱ(1) , γ = γ (1) 0.1824 0.1249 0.5523 0.3909 0.1701 0.1663 0.1358 0.1335 0.0825
(−5.4%) (−7.4%) (−4.5%) (−3.3%) (−1.2%) (−1.2%) (−0.2%) (−0.4%) (+5.6%)

be treated with caution. We hope that more accurate
means of determination of distance-dependent polaris-
ability invariants will be available soon and these numer-
ical results can be rectified in this way.

The results for HF, DF, HCl, DCl, CO, 13C16O,
N2, 14N15N, and F2 are presented in Table 3 (mean
polarisability matrix elements), Table 4 (polarizability
anisotropy matrix elements), and Table 5 (total Raman
intensities). This time, the results are computed with
three different approaches: (a) the exact approach with
ψanharm and ᾱexact and γ exact, (b) single harmonic
approximation with ψanharm and ᾱ(1) and γ (1), and
(c) doubly harmonic approximation with ψharmn and
ᾱ(1) and γ (1). The following discussion is based on
the CASSCF results, but for completeness, Tables 3–5
contain data computed also with other methods (HF,
DFT, and CCSD(T)). These results are discussed later in
Section 3.5.

From the CASSCF data in Tables 3–5, the following
conclusions can be drawn:

(1) In a close analogy tomolecular hydrogen, thematrix
elements of polarisability anisotropy are affected by
the harmonic approximations to a larger degree than
the matrix elements of mean polarisability. This
observation concerns all of the studied molecules,
with larger deviations detected for lightermolecules.

(2) Within a pair of isotopologues (i.e. HF and DF, HCl
andDCl, CO and 13C16O, N2 and 14N15N), the devi-
ations between the matrix element computed using

the exact polarisability invariants and the matrix
element computed using approximate polarisability
invariants are similar, despite that the matrix ele-
ments for both for isotopologuesmay differ to a large
degree. This is not surprising since the pairs of iso-
topologues share the same polarisability invariants.
Consequently, similar observation concerns also the
total Raman intensities of isotopologues.

(3) In the interval [rmin, rmax], corresponding to the
non-negligible values of the ro-vibrational wave
functions, the differences between the exact polar-
isability invariants (ᾱ(exact) and γ (exact)) and their
linear approximants (ᾱ(1) and γ (1)) are rather small
for all of the studied molecules except F2, for which
the shape of both the invariants resembles a convex
hull in this region. Consequently, ᾱ(1) and partic-
ularly γ (1) are bad approximations to ᾱ(exact) and
γ (exact), respectively, which results in large devia-
tions between the exact and approximate matrix ele-
ments of polarisability invariants and the resulting
total Raman intensities. (For a relevant comparison
between F2 and N2, see Figure 5.)

(4) The deviations from the exact results caused by the
double harmonic approximation—corresponding to
the choice of ψharmn and ᾱ(1) and γ (1) in the inte-
gral in Equation (10)—are molecule dependent and
range between −7.5% and +7.5% for the ᾱ matrix
elements, between −9.5% and +17.5% for the γ
matrix elements, and between −8.2% and +9.5%
for the total Raman intensities. The deviations are
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Figure 5. A comparison between ᾱexact and ᾱ(1) (left panels) and between γ exact and γ (1) (right panels) for F2 (upper panels) and
N2 (lower panels), together with the relevant vibrational wave functions ψexact

v=0,J=0 and ψ
exact
v=1,J=0 depicted in the background in grey to

illustrate the extent of the integration region in the integral in Equation (10). It is clear that for N2, the exact polarisability tensor invariants
ᾱexact and γ exact are well modelled by their linear approximants ᾱ(1) and γ (1), while for F2, such an approximation leads to significant
errors. The polarisability invariants are computed using CASSCF.

slightly smaller for the heavier isotopologue within
a given pair of isotopologues.

(5) The accuracy of the single harmonic approximation
is 30–40% better than the accuracy of the double
harmonic approximation. An exception for this rule
is F2, for which both approximations are very bad
(error of >17% for γ and >7% for ᾱ). Typical
errors attributed to the harmonic approximations
are close to several percents.

3.4. Uncertainties arising from inconsistencies in
the quantum chemical description of polarisability
invariants

In Section 3.1.1 we have demonstrated that the distance-
dependent polarisability tensor components α‖ and α⊥
computed with various ab initio techniques can differ
substantially due to the insufficient description of the
electronic wave functions in the vicinity of the disso-
ciation limit by the single-reference-based methods; for
details, see Figure 4. The discrepancies between the com-
puted curves are sizable even in the integration interval
[rmin, rmax] relevant to Equation (10), where the four
tested ab initio techniques display considerable dispar-
ities (for details, see Figures 2 and 3). It is not sur-
prising that the polarisability matrix elements computed
with those curves and tabulated in Tables 3 and 4 differ
substantially and affect the resulting Raman intensities
tabulated in Table 5. Consequently, large differences in

the values of the total Raman intensities computed with
different theoretical methods (HF, CASSCF, DFT and
CCSD(T)) are observed.

A few regularities (and irregularities) are worth
highlighting:

(1) The polarisability invariants matrix elements com-
puted with the exact methodology with various
ab initio techniques may differ substantially. For
HF, HCl, CO, and N2 and their isotopologues, the
detected differences can be as large as 56% for the
mean polarisability and 60% for the polarisabil-
ity anisotropy; both these maximal deviations are
observed between thematrix elements of N2 derived
from the CASSCF and Hartree-Fock polarisabilities.

(2) These maximal deviations have been determined
without taking into account the F2 molecule, for
which the deviations are enormous: the matrix ele-
ments determined using the Hartree-Fock polaris-
ability invariants are over 15 times larger (ᾱ) and
over 60 larger (γ ) than the corresponding CASSCF
quantities, while forDFT andCCSD(T) these factors
are approximately 6 and 18 times larger, and 3 and 6
times larger, respectively.

(3) To understand the strong dependence of the com-
puted matrix elements and the total Raman intensi-
ties of F2 on the selected ab initio technique, we have
plotted in Figure 6 a close-up view of the distance-
dependent polarisability invariants ᾱexact and γ exact
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Figure 6. A comparison between distance-dependent polarisability invariants ᾱexact (left panels) and γ exact (right panels) for F2 (upper
panels) and N2 (lower panels) computed with various ab initiomethods, together with the relevant vibrational wave functionsψexact

v=0,J=0
and ψexact

v=1,J=0 depicted in the background in grey to illustrate the extent of the integration region in the integral in Equation (10). It is
clear that for N2, all the methods produce curves that can be approximated by linear functions with similar slopes, while for F2, distinct
functional dependence of curves obtained with different methods causes large differences in the computed matrix elements and total
Raman intensities.

computed with various methods for F2 and N2. The
difference between these two molecules is striking.
For N2, all the curves inside the integration interval
[rmin, rmax] could be reasonably well approximated
by linear functions with similar slopes. For F2, sim-
ilar operation could be performed only for the DFT
and HF curves, while the curves computed with
both CASSCF and CCSD(T) have strong quadratic
character. This observations explains well why F2
behaves differently than other molecules.

(4) There seem to be no obvious correlation between the
method of calculations, the molecule under study,
and the magnitude and the direction of the devia-
tion from the CASSCF results. For every molecule
and for every method, the deviations can be either
small or large and either positive or negative.

(5) Within a pair of isotopologues (i.e. HF and DF, HCl
and DCl, CO and 13C16O, N2N 2 and 14N15N),
the deviations between the matrix elements com-
puted with various ab initio techniques display sim-
ilar trends. Similar observation concerns also the
total Raman intensities of isotopologues.

The deviations from CASSCF in the matrix elements
computed with DFT, HF, and CCSD(T) automatically
propagate to the associated deviations in the total Raman

intensities. These deviations are illustrated graphically
in Figure 7, where for each pair of isotopologues, we
have represented the CASSCF total Raman intensity as
a blue bar of height 100 and the total Raman intensi-
ties computed with other ab initio methods as bars in
other colours, each of a height associated with the rel-
evant total Raman intensity corresponding to a given
method.

The most important observations concerning these
results can be summarised as follows:

(1) For HF, HCl, CO, and N2 and their isotopologues,
the difference between the reference CASSCF total
Raman intensities and analogous results computed
with other methods can be quite substantial with
deviations from 5% to 57%. For F2, the differences
are much larger: 264% for CCSD(T), 793% for DFT
and over 2000% for HF.

(2) The deviations associated with using inadequate
electronic structure method to compute distance-
dependent polarisability invariants completely over-
shadow the inaccuracies associated with double
harmonic approximation. It seems at the moment
that solving the problem how to produce accurate
distance-dependent polarisability invariants ismuch
more pressing than addressing othermethodological
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Figure 7. Comparison of the relative Raman intensities of the fundamental vibrational transition computed with various ab initiometh-
ods for nine studied here diatomicmolecules. Thematrix elements of polarisability invariants were computed using the ᾱexact and γ exact

polarisability invariants determined by differentmethods and exact wave functionsψanharm determined from experimental data. Results
from other methods are normalised relative to the CASSCF results.

details in the process of determination of accurate
total Raman intensities.

3.5. Discussion

The tested here double harmonic approximation is char-
acterised by errors between −8.2% and +9.5% for the
12 studied molecules. This is not small, because typi-
cal experimental errors associated with the acquisition
of Raman intensities are lower and could be estimated
to be within ±5% [75]. Therefore, precise Raman inves-
tigations aiming at accuracy better than 5% should not
use double harmonic approximation for the interpre-
tation of the experimental results. An alternative to
the standard approach is the scheme presented by us
in the current manuscript. However, the actual corre-
spondence between the theoretical off-resonance Raman
cross-sections and the experimental Raman intensities is
more complicated. The reported here total Raman inten-
sities correspond to the frequency-independent Raman

cross-sections, (ε0/π)2ν̃−10 ν̃−3s × (dσ/d), expressed in
atomic units, with ν̃0 denoting the absolute frequency of
the incident light and ν̃s denoting the absolute frequency
of the scattered light [76,77]. Adirect comparison of these
quantities with experimentally determined Raman cross-
sections would involve the inclusion of the frequency
factor ν̃0 ν̃3s , which takes into account the information
about the specific laser used in the experiment and the
particular molecular transition. Moreover, experimental
Raman intensities include also the effect of temperature
affecting the Boltzmann population of the initial state,
and the wavelength-dependent response function of the
Raman spectrometer. The first of this quantities is rela-
tively straightforward to account for, while the determi-
nation of the correction associated with the wavelength-
dependent sensitivity of the Raman spectrometer can be
by itself an arduous task [78,79].

In a sense, the accuracy estimates of the double har-
monic approximation given in the previous paragraph
fulfil the main goal of the current study. However, in
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Figure 8. Comparison of errors originating from the double harmonic approximation (upper panel) and the single harmonic approxi-
mation (lower panel) in the process of determination of total Raman intensities for the fundamental vibrational transition for 12 diatomic
molecules. The errors correspond to the differences between results computed with the exact methodology based on anharmonic ro-
vibrational wave functionsψanhrm and distance-dependent polarisability invariants ᾱexact and γ exact, and the approximate results based
on the harmonic ro-vibrational wave functions ψharmn and linear approximants ᾱ(1) and γ (1) (double harmonic approximation) or on
the anharmonic ro-vibrational wave functionsψanhrm and linear approximants ᾱ(1) and γ (1) (single harmonic approximation).

the process of constructing the answer to the question
risen at the beginning of thismanuscript, we have realised
that there exists much more pressing problem that needs
to be urgently addressed in order to provide the phys-
ical chemistry community with a method of produc-
ing reliable theoretical estimates of total Raman inten-
sities. Namely, we have discovered that the currently
available quantum chemical techniques of determina-
tion of distance-dependentmolecular polarisabilities suf-
fer from serious drawbacks associated with inadequate
description of molecular electronic structure at larger
internuclear distances. It is well known that single refer-
encemethods cannot describe adequatelymolecules with
stretched bonds, which is associated with their inabil-
ity of a correct description of the dissociation limit. We
have discovered here that this limitation affects already
the accuracy of molecular polarisability components
determined with HF, DFT, and CCSD(T) for molecules
with bonds stretched out of the equilibrium position
by a relatively small amount. The resulting distance-
dependent polarisability components computed using
HF, DFT, and CCSD(T) differ significantly from each
other and diverge systematically from the correct long-
range behaviour. We have circumvented this problem by
applying in the current study the CASSCF method to
determine the polarisability invariant, because it seems
at the moment to be the only method able to correctly

describe the physically sane behaviour of polarisabil-
ity invariants at the whole range of the internuclear
separations relevant in the process of computing total
Raman intensities. However, CASSCF does not account
for dynamic correlation and consequently, the polaris-
ability components determined in this way are not too
accurate. We hope that this explicit demonstration of
the problems associated with determination of accurate
distance-dependent polarisability components will stim-
ulate the community for finding better and more reli-
able methods of computing this quantity. In this regard,
CASPT2 (second-order complete active space perturba-
tion theory) and NEVPT2 (second-order n-electronic
valence state perturbation theory) techniques [27] would
be the most promising way of computing physically-
meaningful distance-dependent polarisabilities, but at
the moment the CASPT2 and NEVPT2 response theory
codes are not yet available.

4. Conclusions

We show in this study that the total Raman inten-
sities of fundamental vibrational transitions for 12
diatomic molecules computed within the double har-
monic approximation are characterised by errors between
−8.2% and +9.5% with respect to an exact treatment
based on anharmonic ro-vibrational wave functions
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ψanhrm and distance-dependent polarisability invariants
ᾱexact and γ exact. A graphical compilation of the result-
ing errors is given in Figure 8 for all the studied here
molecules. These errors are slightly larger than the analo-
gous errors originating from the single harmonic approx-
imation. The largest discrepancies are observed for F2,
for which the exact functional dependence of the polaris-
ability invariants ᾱexact and γ exact cannot be well approx-
imated by linear functions ᾱ(1) and γ (1), respectively.

For isotopologues ofmolecular hydrogen, the reported
here values of total Raman intensities should be close to
the exact absolute values. The situation is quite different
for heavier molecules, HF, DF, HCl, DCl, CO, 13C16O,
N2, 14N15N, and F2, for which we have realised (unex-
pectedly) that the determination of accurate distance-
dependent polarisability invariants needed to evaluate
the integral in Equation (2) is difficult if not impossi-
ble with the currently existing quantum chemical codes.
The spatial extent of the ro-vibrational wave functions
requires the knowledge of polarisability invariants at
stretched molecular geometries, where the single refer-
ence methods start to fail (producing large numerical
errors) and the available multireference techniques are
not accurate enough (producing likely sizable errors).
The errors associated with inaccuracies in the distance-
dependent polarisability tensor seem to be much larger
than the errors originating from the shortcomings of the
harmonic approximations, and at the moment seem to
be principal factor determining the accuracy of the com-
puted total Raman intensities. The best example here is
the F2 molecule, for which the total Raman intensities
computed with various quantum chemical methods can
differ even by a factor of 20 (for details, see Section 3.4
and Figure 7). These findings clearly show that there
exist an urgent need for developing more accurate meth-
ods of computing the distance-dependent polarisability
invariants, applicable also to distorted molecular geome-
tries.We believe that this discovery is themost important
outcome of our work.

Notes

1. Total wave function here is expressed as product of har-
monic oscillator wave functions of each normal mode, i.e.
ψvi =

∏
φvi(Qk), and similarly ψvf =

∏
φvf (Qk).

2. This approach also covers the infrared intensities where the
polarisability operator is replaced by the dipole moment
operator.

3. We limit our discussion to the transitions in the ground
electronic state which is non-degenerate. Only off-
resonance Raman scattering intensities are studied here.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was financially supported byMinistry of Science and
Technology of Taiwan [grant numbers 105-2923-M-009-001-
MY3, 108-2113-M-009-010-MY3, and 103-2113-M-009-001]
and the Center for Emergent Functional Matter Science of
National Yang Ming Chiao Tung University from the Featured
Areas Research Center Program within the framework of the
Higher Education Sprout Project by the Ministry of Education
(MOE), Taiwan.

Data availability statement

Online repository at GitHub [72], indexed with DOI
(10.5281/zenodo.6126144), contains the following auxil-
iary data: (i) datasets on the polarisability invariants for
H2, HD, D2 (generated using the CCSD methodology)
and for HF, HCl, CO, N2, and F2 (generated using the
CASSCF methodology), (ii) the potential energy curves
used in the computations of exact and approximate ro-
vibrational wave functions, (iii) ro-vibrational wave func-
tions ψanharm and ψharmn for all the studied molecules
(including isotopologues) with v = 0, 1 and J = 0, 1, 2, 3,
(iv) python [67,80,81] program implementing the collo-
cationmethod to produce the ro-vibrational energy levels
and wave functions for a given potential, and (v) python
program using the collocation method for determina-
tion of an optimal potential energy curve reproducing a
given dataset of experimental ro-vibrational energies and
transition frequencies.

ORCID

Ankit Raj http://orcid.org/0000-0002-2495-3354
Henryk A. Witek http://orcid.org/0000-0002-9013-1287

References

[1] G. Placzek, Handb. Radiol. Akad. Verlagsgesselschaft VI
2, 209–374 (1934).

[2] E.B. Wilson, J.C. Decius and P.C. Cross,Molecular Vibra-
tions: The Theory of Infrared and Raman Vibrational Spec-
tra (Dover Publications, New York, 1955).

[3] B.A. Hess, L.J. Schaad, P. Carsky and R. Zahradnik, Chem.
Rev. 86, 709–730 (1986). doi:10.1021/cr00074a004

[4] M.D. Halls, J. Velkovski and H.B. Schlegel, Theor. Chem.
Acc. 105, 413–421 (2001). doi:10.1007/s002140000204

[5] A.P. Scott and L. Radom, J. Phys. Chem. 100, 16502–
16513 (1996). doi:10.1021/jp960976r

[6] K.K. Irikura, R.D. Johnson and R.N. Kacker, J. Phys.
Chem. A 109, 8430–8437 (2005). doi:10.1021/jp052793n

[7] NIST Standard Reference Database 101, CCCBD: Pre-
computed vibrational scaling factors, NISThttps://cccbdb
.nist.gov/vibscalejust.asp.

[8] M.W. Wong, Chem. Phys. Lett. 256, 391–399 (1996).
doi:10.1016/0009-2614(96)00483-6

[9] J.P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A
111, 11683–11700 (2007). doi:10.1021/jp073974n

http://orcid.org/0000-0002-2495-3354
http://orcid.org/0000-0002-9013-1287
https://doi.org/10.1021/cr00074a004
https://doi.org/10.1007/s002140000204
https://doi.org/10.1021/jp960976r
https://doi.org/10.1021/jp052793n
https://cccbdb.nist.gov/vibscalejust.asp
https://doi.org/10.1016/0009-2614(96)00483-6
https://doi.org/10.1021/jp073974n


18 A. RAJ ET AL.

[10] R.D. Johnson, K.K. Irikura, R.N. Kacker and R. Kessel,
J. Chem. Theory Comput. 6, 2822–2828 (2010). doi:10.10
21/ct100244d

[11] D.O. Kashinski, G.M. Chase, R.G. Nelson, O.E.D. Nallo,
A.N. Scales, D.L. VanderLey and E.F.C. Byrd, J. Phys.
Chem. A 121, 2265–2273 (2017). doi:10.1021/acs.jpca.
6b12147

[12] H.K. Dhah, Ph.D. Dissertation, University of Tennessee
Knoxville, TN, USA, 2018.

[13] Y. Cornaton, M. Ringholm, O. Louant and K. Ruud,
Phys. Chem. Chem. Phys. 18 (5), 4201–4215 (2016).
doi:10.1039/C5CP06657C

[14] R. Herman and R.F. Wallis, J. Chem. Phys. 23, 637–646
(1955). doi:10.1063/1.1742069

[15] T.C. James and W. Klemperer, J. Chem. Phys. 31,
2664–2669 (1959). doi:10.1063/1.1730279.

[16] C. Asawaroengchai and G.M. Rosenblatt, J. Chem. Phys.
72, 2664–2669 (1980). doi:10.1063/1.439412

[17] H. Hamaguchi, I. Suzuki and A.D. Buckingham, Mol.
Phys. 43, 963–973 (2006). doi:10.1080/002689781001
01791

[18] H. Hamaguchi, A.D. Buckingham and W.J. Jones, Mol.
Phys. 43, 1311–1319 (2006). doi:10.1080/0026897810010
2081

[19] H. Hamaguchi, A.D. Buckingham and W.J. Jones, Mol.
Phys. 46, 1093–1098 (2006). doi:10.1080/002689782001
01821

[20] A. Raj, H.A. Witek and H. Hamaguchi, Mol. Phys. 118,
e1632950 (2019). doi:10.1080/00268976.2019.1632950.

[21] J. Rychlewski,Mol. Phys.41, 833–842 (2006). doi:10.1080/
00268978000103191

[22] J. Rychlewski, Chem. Phys. Lett. 73, 135–138 (1980).
doi:10.1016/0009-2614(80)85220-1

[23] J. Rychlewski, J. Chem. Phys. 78, 7252–7259 (1983).
doi:10.1063/1.444713

[24] H. Ågren, O. Vahtras and B. Minaev, Adv. Quantum
Chem. 27, 71–162 (1996). doi:10.1016/S0065-3276(08)
60251-8

[25] P. Jørgensen,H.J.A. Jensen and J. Olsen, J. Chem. Phys. 89,
3654–3661 (1988). doi:10.1063/1.454885

[26] J. Olsen, D.L. Yeager and P. Jørgensen, J. Chem. Phys. 91,
381–388 (1989). doi:10.1063/1.457471

[27] T. Helgaker, P. Jørgensen and J. Olsen, Molecular Elect-
ronic-Structure Theory (John Wiley & Sons, New York,
2000).

[28] A. Raj,H.Hamaguchi andH.A.Witek, J. Chem. Phys. 148,
104308 (2018). doi:10.1063/1.5011433

[29] O. Christiansen, A. Halkier, H. Koch, P. Jørgensen and
T. Helgaker, J. Chem. Phys. 108, 2801–2816 (1998).
doi:10.1063/1.475671

[30] K. Aidas, C. Angeli, K.L. Bak, V. Bakken, R. Bast, L.
Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P.
Dahle, E.K. Dalskov, U. Ekström, T. Enevoldsen, J.J. Erik-
sen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl,
L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg,
T. Helgaker, A.C. Hennum, H. Hettema, E. Hjertenaes,
S. Høst, I.M. Høyvik, M.F. Iozzi, B. Jansık, H.J.A. Jensen,
D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjaer-
gaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J.
Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O.B. Lut-
naes, J.I. Melo, K.V. Mikkelsen, R.H. Myhre, C. Neiss,
C.B. Nielsen, P. Norman, J. Olsen, J.M.H. Olsen, A. Osted,

M.J. Packer, F. Pawlowski, T.B. Pedersen, P.F. Provasi, S.
Reine, Z. Rinkevicius, T.A. Ruden, K. Ruud, V.V. Rybkin,
P. Sałek, C.C.M. Samson, A.S. de Merás, T. Saue, S.P.A.
Sauer, B. Schimmelpfennig, K. Sneskov, A.H. Steindal,
K.O. Sylvester-Hvid, P.R. Taylor, A.M. Teale, E.I. Tell-
gren, D.P. Tew, A.J. Thorvaldsen, L. Thøgersen, O. Vah-
tras, M.A. Watson, D.J.D. Wilson, M. Ziolkowski and
H. Ågren, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4,
269–284 (2013). doi:10.1002/wcms.1172.

[31] S.L. Mielke, B.C. Garrett and K.A. Peterson, J. Chem.
Phys. 116, 4142–4161 (2002). doi:10.1063/1.1432319

[32] B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson and
T.L. Windus, J. Chem. Inf. Model. 59, 4814–4820 (2019).
doi:10.1021/acs.jcim.9b00725

[33] K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V.
Gurumoorthi, J. Chase, J. Li and T.L. Windus, J. Chem.
Inf. Model. 47, 1045–1052 (2007). doi:10.1021/ci600510j

[34] K. Raghavachari, G.W. Trucks, J.A. Pople and M.
Head-Gordon, Chem. Phys. Lett. 157, 479–483 (1989).
doi:10.1016/S0009-2614(89)87395-6

[35] R.J. Bartlett, J. Watts, S. Kucharski and J. Noga, Chem.
Phys. Lett. 165, 513–522 (1990). doi:10.1016/0009-2614
(90)87031-L

[36] T.H. Dunning, J. Chem. Phys. 90, 1007–1023 (1989).
doi:10.1063/1.456153

[37] R.A. Kendall, T.H. Dunning and R.J. Harrison, J. Chem.
Phys. 96, 6796–6806 (1992). doi:10.1063/1.462569

[38] D.A. Matthews, L. Cheng, M.E. Harding, F. Lipparini, S.
Stopkowicz, T.C. Jagau, P.G. Szalay, J. Gauss and J.F. Stan-
ton, J. Chem. Phys. 152, 214108 (2020). doi:10.1063/5.00
04837

[39] J.F. Stanton, J. Gauss, L. Cheng, M.E. Harding, D.A.
Matthews, P.G. Szalay, CFOUR, Coupled-Cluster tech-
niques for Computational Chemistry, a quantum-
chemical program package with contributions fromA.A.
Auer, A. Asthana, R.J. Bartlett, U. Benedikt, C. Berger,
D.E. Bernholdt, S. Blaschke, Y.J. Bomble, S. Burger, O.
Christiansen, D. Datta, F. Engel, R. Faber, J. Greiner, M.
Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau,
D. Jonsson, J. Jusélius, T. Kirsch, K. Klein, G.M. Kop-
per, W.J. Lauderdale, F. Lipparini, J. Liu, T. Metzroth, L.A.
Mück, D.P. O’Neill, T. Nottoli, D.R. Price, E. Prochnow,
C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C.
Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F.Wang and
J.D. Watts, the integral packages MOLECULE (J. Almlöf
and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Hel-
gaker,H.J. Aa. Jensen, P. Jørgensen, and J.Olsen), andECP
routines byA. V.Mitin andC. vanWüllen, For the current
version, see https://www.cfour.de.

[40] D.R. Hartree and W. Hartree, Proc. R. Soc. London, Ser.
A 150, 9–33 (1935). doi:10.1098/rspa.1935.0085

[41] D. Hegarty and M.A. Robb, Mol. Phys. 38, 1795–1812
(1979). doi:10.1080/00268977900102871

[42] M. Frisch, I.N. Ragazos, M.A. Robb and H.B. Schlegel,
Chem. Phys. Lett. 189, 524–528 (1992). doi:10.1016/0009
-2614(92)85244-5

[43] J. Olsen and P. Jørgensen, J. Chem. Phys. 82, 3235–3264
(1985). doi:10.1063/1.448223

[44] H.J.A. Jensen, P. Jørgensen and H. Ågren, J. Chem. Phys.
87, 451–466 (1987). doi:10.1063/1.453590

[45] J. Olsen, Int. J. Quantum Chem. 111, 3267–3272 (2011).
doi:10.1002/qua.23107

https://doi.org/10.1021/ct100244d
https://doi.org/10.1021/acs.jpca.6b12147
https://doi.org/10.1039/C5CP06657C
https://doi.org/10.1063/1.1742069
https://doi.org/10.1063/1.1730279
https://doi.org/10.1063/1.439412
https://doi.org/10.1080/00268978100101791
https://doi.org/10.1080/00268978100102081
https://doi.org/10.1080/00268978200101821
https://doi.org/10.1080/00268976.2019.1632950
https://doi.org/10.1080/00268978000103191
https://doi.org/10.1016/0009-2614(80)85220-1
https://doi.org/10.1063/1.444713
https://doi.org/10.1016/S0065-3276(08)60251-8
https://doi.org/10.1063/1.454885
https://doi.org/10.1063/1.457471
https://doi.org/10.1063/1.5011433
https://doi.org/10.1063/1.475671
https://doi.org/10.1002/wcms.1172
https://doi.org/10.1063/1.1432319
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1021/ci600510j
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/0009-2614(90)87031-L
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.462569
https://doi.org/10.1063/5.0004837
https://www.cfour.de
https://doi.org/10.1098/rspa.1935.0085
https://doi.org/10.1080/00268977900102871
https://doi.org/10.1016/0009-2614(92)85244-5
https://doi.org/10.1063/1.448223
https://doi.org/10.1063/1.453590
https://doi.org/10.1002/qua.23107


MOLECULAR PHYSICS 19

[46] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864–B871
(1964). doi:10.1103/PhysRev.136.B864

[47] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133–A1138
(1965). doi:10.1103/PhysRev.140.A1133

[48] R.G. Parr and W. Yang, Density-Functional Theory of
Atoms and Molecules (International Series of Monographs
on Chemistry) (Oxford University Press, New York, USA,
1994).

[49] A.D. Becke, J. Chem. Phys. 140, 18A301 (2014). doi:10.
1063/1.4869598

[50] J. Noga and R.J. Bartlett, J. Chem. Phys. 86, 7041–7050
(1987). doi:10.1063/1.452353

[51] G.E. Scuseria and H.F. Schaefer, Chem. Phys. Lett.
152, 382–386 (1988). doi:10.1016/0009-2614(88)80
110-6

[52] J. Gauss and J.F. Stanton, Phys. Chem. Chem. Phys. 2,
2047–2060 (2000). doi:10.1039/a909820h

[53] A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993).
doi:10.1063/1.464913

[54] P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J.
Frisch, J. Phys. Chem. 98, 11623–11627 (1994). doi:10.10
21/j100096a001

[55] S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58,
1200–1211 (1980). doi:10.1139/p80-159

[56] C. Lee, W. Yang and R.G. Parr, Phys. Rev. B 37, 785–789
(1988). doi:10.1103/PhysRevB.37.785

[57] L. Wolniewicz, J. Chem. Phys. 99, 1851–1868 (1993).
doi:10.1063/1.465303

[58] P.M.Morse, Phys. Rev. 34, 57–64 (1929). doi:10.1103/Phy
sRev.34.57

[59] Y.P. Varshni, Rev. Mod. Phys. 29, 664–682 (1957).
doi:10.1103/RevModPhys.29.664

[60] R. Rydberg, Z. Angew. Phys. 73, 376–385 (1932). doi:
10.1007%2Fbf01341146.

[61] H.Y.Abdullah, Bull.Mater. Sci. 42, 57 (2019). doi:10.1007/
s12034-019-1740-5

[62] J.P. Araújo andM.Y. Ballester, Int. J. QuantumChem. 121,
e26808 (2021). doi:10.1002/qua.26808.

[63] K.P. Huber and G. Herzberg, Molecular Spectra and
Molecular Structure: IV. Constants of Diatomic Molecules
(Van Nostrand, New York, USA, 1979).

[64] U.M. Ascher and L.R. Petzold, Computer Methods for
Ordinary Differential Equations and Differential-Algebraic
Equations (Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA, 2009).

[65] E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordi-
nary Differential Equations I: Nonstiff Problems (Springer-
Verlag, Berlin, Heidelberg, 1993).

[66] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Tay-
lor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer,
M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del
Rıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K.
Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C.
Gohlke and T.E. Oliphant, Nature 585, 357–362 (2020).
doi:10.1038/s41586-020-2649-2

[67] T.E. Oliphant, Guide to NumPy (Trelgol Publishing, USA,
2006).

[68] W.H. Press, S.A. Teukolsky, B.P. Flannery and W.T. Vet-
terling, Numerical Recipes in Fortran (The Art of Scien-
tific Computing) (Cambridge University Press, New York,
1993), pp. 140–150.

[69] T.N.L. Patterson, Math. Comput. 22, 847–856 (1968).
doi:10.1090/mcom/1968-22-104

[70] T.N.L. Patterson, Math. Comput. 23, 892 (1969). doi:10.
1090/mcom/1969-23-108

[71] R. Piessens, E. deDoncker-Kapenga, C.Überhuber andD.
Kahaner,Quadpack – A Subroutine Package for Automatic
Integration (Springer-Verlag, Berlin, Heidelberg, 1983).

[72] A. Raj and Y.B. Chao, A repository containing a Python
module and sets of functions for PES determination
from expt. data on transition frequencies, computing
polarizability matrix elements and Raman intensities,
https://github.com/ankit7540/Raman-Intensity-Approx
mn-Test (accessed December 23, 2021) (2022).

[73] P. Schwerdtfeger and J.K. Nagle, Mol. Phys. 117, 1200–
1225 (2019). doi:10.1080/00268976.2018.1535143

[74] G. Maroulis, Chem. Phys. Lett. 442, 265–269 (2007).
doi:10.1016/j.cplett.2007.06.024

[75] A. Raj, H.A. Witek and H. Hamaguchi, J. Raman Spec-
trosc. 52, 1032–1047 (2021). doi:10.1002/jrs.v52.5

[76] D.A. Long, The Raman Effect: A Unified Treatment of the
Theory of Raman Scattering by Molecules (John Wiley &
Sons Ltd, Chichester, England, 2002).

[77] A. Raj, H.A. Witek and H. Hamaguchi, Asian J. Phys. 30,
321–335 (2021).

[78] A. Raj, C. Kato, H.A. Witek and H. Hamaguchi, J. Raman
Spectrosc. 51, 2066–2082 (2020). doi:10.1002/jrs.v51.10

[79] A. Raj, C. Kato, H.A. Witek and H. Hamaguchi, J. Raman
Spectrosc. 52, 2038–2050 (2021). doi:10.1002/jrs.v52.12

[80] E. Jones, T.E. Oliphant and P. Peterson et al., SciPy: Open
source scientific tools for Python 2001, https://www.scipy.
org/ (accessed February 22, 2019).

[81] P. Virtanen, R. Gommers and T.E. Oliphant et al., Nat.
Methods 17, 261–272 (2020). doi:10.1038/s41592-019-
0686-2

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.452353
https://doi.org/10.1016/0009-2614(88)80110-6
https://doi.org/10.1039/a909820h
https://doi.org/10.1063/1.464913
https://doi.org/10.1021/j100096a001
https://doi.org/10.1139/p80-159
https://doi.org/10.1103/PhysRevB.37.785
https://doi.org/10.1063/1.465303
https://doi.org/10.1103/PhysRev.34.57
https://doi.org/10.1103/RevModPhys.29.664
https://doi.org/10.1007%2Fbf01341146
https://doi.org/10.1007/s12034-019-1740-5
https://doi.org/10.1002/qua.26808
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1090/mcom/1968-22-104
https://doi.org/10.1090/mcom/1969-23-108
https://github.com/ankit7540/Raman-Intensity-Approxmn-Test
https://doi.org/10.1080/00268976.2018.1535143
https://doi.org/10.1016/j.cplett.2007.06.024
https://doi.org/10.1002/jrs.v52.5
https://doi.org/10.1002/jrs.v51.10
https://doi.org/10.1002/jrs.v52.12
https://www.scipy.org/
https://doi.org/10.1038/s41592-019-0686-2

	1. Introduction
	2. Analysis scheme
	2.1. Overview
	2.2. Computational details
	2.2.1. Polarizability calculations
	2.2.2. Wavefunctions
	2.2.3. Truncated expansions of polarisability invariants


	3. Results
	3.1. Polarizabilities
	3.1.1. Sanity check for the computed distance-dependent polarisabilities

	3.2. Ro-vibrational wave functions
	3.3. Matrix elements of polarisability invariants and total Raman intensities
	3.4. Uncertainties arising from inconsistencies in the quantum chemical description of polarisability invariants
	3.5. Discussion

	4. Conclusions
	Notes
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


